Interactions between proteins, DNA and RNA

The energy, length and time coordinate system to find your way in the cell

Coordinates for my lecture Tuesday, 14:15-15:45 BioQuant, seminar room 044

Karsten Rippe BioQuant Room 645, 6th floor Telefon: 54-51376 e-mail: <u>Karsten.Rippe@dkfz.de</u>

Overview on learning Biophysics in Heidelberg http://malone.bioquant.uni-heidelberg.de/teaching

Material for the lecture: Biophysical concepts and theoretical descriptions <u>http://malone.bioquant.uni-heidelberg.de/BPC_2014/BPC_1+2.html</u>

Username: teaching Password: nonukes

(currently not active)

Problem sets

- Starting today there will be problem sets every 1-2 weeks (8-10 total)
- These have to be returned until the following Tuesday at the beginning of lecture
- Then answers to the problem set (and any problems) are discussed
- Corrected problem sets are returned the next Tuesday (ideally...)
- "Benotete Scheine" will be given according to the results from the problem set
- You can select one bonus problem set of your choice, i. e. one can get 100% with one missing or > 100 % if one does all problem sets correctly

The energy, length and time coordinate system to find your way in the cell

- Length: E. coli Yeast cell Human cell
- Speed: *E. coli* how fast does it stop and go?

Energy: Hydrolysis of ATP?

Quantitative biology needs numbers...

Cell Biology by the Numbers (upcoming book by Rob Philipps & Ron Milo, Lecture by Ron Milo). Book draft: http://book.bionumbers.org

Bionumbers database http://bionumbers.hms.harvard.edu

 Develop a coordinate system and intuition about the molecular life of a cell - "the microscopic world"

"Sanity" checks (lecture, discussion, design of experiment...)

Try to rationalize why the cell operates in a certain manner

How many mRNA molecules are in an *E. coli* cell?

Before Ludwig Boltzmann got depressed and killed himself, he did some really great things, like inventing the Boltzmann constant

Molecules in an ideal gas

A protein like lysozyme (M = 14 kDa) at room temperature would have a speed of $\langle v_x^2 \rangle^{1/2} = 13$ m/sec **in vacuum**.

Movements of a macromolecule in solution

- The macromolecule collides with water molecules and moves in a "random walk".
- The length of the free path is much smaller than the diameter of the particle.
- The average distance from the starting point is proportional to the square root of time.

$k_{\rm B}T$ is the energy available for spontaneous reactions

$$P_{\rm i} \propto g_i \cdot \exp\left(\frac{-E_{\rm i}}{k_{\rm B}T}\right)$$

The Boltzmann equation yields the probability P_i to find a molecule with energy E_i

- g_i : number of different states with energy E_i
- *k*_B: Boltzmann constant
- T: Temperature

probability to find a particle with an energy

- of k_BT or larger: 0.37 => processes that requires an energy of k_BT occur spontaneously
- of 10 k_BT or larger: 0.00005 => these processes will not occur spontaneously

at 25 °C $k_{\rm B}T$ = 4.1·10⁻²¹ J or $k_{\rm B}T$ = 4.1 pN·nm

 $k_{\rm B}T$ refers to a single molecule for of 1 mol of particles one has to use $k_{\rm B}T \ge 6.022 \cdot 10^{23} = RT$

```
at 25 °C with = 8.3 J · mol<sup>-1</sup> · K<sup>-1</sup> => RT = 2.5 kJ/mol or 0.6 kcal/mol
```

```
Hydrolysis of ATP: ~20 k<sub>B</sub>T/ATP, 10 - 15 kcal/mol or 40 - 60 kJ/mol
```

The free energy ΔG

 At constant pressure P and constant temperature T the system is described by the Gibbs free energy:

$$G \equiv H - TS \qquad \Delta G = \Delta H - T\Delta S$$

- *H* is the enthalpy or heat content of the system, *S* is the entropy of the system
- a reaction occurs spontaneously only if $\Delta G < 0$
- at equilibrium $\triangle G = 0$
- for $\Delta G > 0$ the input of energy is required to drive the reaction

ΔG of an reaction in equilibrium

$$aA + bB + \dots \rightleftharpoons gG + hH \dots$$

$$0 = \Delta G^0 + RT \ln \left(\frac{[G]^g [H]^h \dots}{[A]^a [B]^b \dots} \right)_{Eq}$$

$$\Delta G^0 = -RT \ln \left(\frac{[G]^g [H]^h \dots}{[A]^a [B]^b \dots} \right)_{\text{Eq}} = -RT \ln K$$

$$K = \left(\frac{[G]^{g}[H]^{h} \dots}{[A]^{a}[B]^{b} \dots}\right)_{\text{Eq}} = \exp\left(\frac{-\Delta G^{0}}{RT}\right)$$

Weak forces maintain macromolecular structure

At 25 °C, 0.6 kcal/mol or 2.5 kJ/mol thermal energy: enough to break non-covalent bonds

=> Noncovalent interactions constantly forming and breaking

- Van der Waals Attractive Forces: 0.1 1.0 kcal/mol, 1/r⁶
- Hydrogen Bonds: 1 2 kcal/mol, 1/r³
- Ionic Interactions: 5 kcal/mol physiological, 1/r
- Covalent bonds: 50 200 kcal/mol, 1/r^{very high}
- Hydrolysis of ATP: 10 15 kcal/mol, 40 60 kJ/mol, ~20 k_BT/ATP

but they can occur between macromolecule and water/ ions just as well...

Hydrogen bonding of liquid water

Hydrogen bonding of liquid water

Protein folding as seen in molecular dynamics simulations of the villin protein headpiece (~10 μ s time scale)

Scheme of protein folding with solvent accessible amino acids in black

folded state

random coil

Table 1. Folded globular proteins.

	buried®
non-polar side chains (Ala, Val, Ile, Leu,	
Met, Phe, Trp, Cys)	83%
peptide groups (-CO-NH-)	82%
ca. 1.1 intramolecular hydrogen bonds for	med per residue ^b

^a Lesser & Rose (1990).
^b Stickle *et al.* (1992).

Calculating entropy: how probable or disordered is the final state?

Entropy provides that measure (Boltzmann)...

Number of microscopic ways in which a particular outcome (macroscopic state) can be attained

Criterion for Spontaneity:

For Avogadro number's of molecules...

Therefore: the most probable outcome maximizes entropy of <u>isolated systems</u>

 $\Delta S > 0$ (spontaneous) $\Delta S < 0$ (non-spontaneous)

Unfavorable conformation entropy for protein folding

for the folded state: ~ 1 conformation

$$S_{\text{folded}} = R \ln(1) = 0$$

for the unfolded state: x is the number of flexible points per residue and z is the number or possible orientations of equal energy at each point.

$$S_{\text{unfolded}} = R \ln(z^x)$$

Estimating the unfavorable conformational entropy for protein folding

$$S_{\text{conf}} = R \ln(z^{x})$$
 $\Delta S_{\text{fold}} = R \ln\left(\frac{W_{\text{unfolded}}}{W_{\text{folded}}}\right)$

Tanford: For three flexible positions (ϕ , ψ , side chain) with two possible orientations each we have 2³ conformations per residue:

-T∆S = 1.2 kcal/mol or 5.0 kJ/mol (estimate Tanford 1962) 1.7 kcal/mol (Spolar and Record, Science)

The hydrophobic effect drives macromolecular interactions

- Minimization of non-polar/water surface area leads to stability
- Complex mixture of physical properties
- Entropic contribution most significant
- Water must form a "cage" structure around non-polar surfaces

Measure solubility of amino acid in ethanol (= inside the folded protein) and in water (= unfolded state or at the protein surface)

partition coefficient $K_{\rm D} = \frac{\text{solubility} (Alanin_{\rm EtOH})}{\text{solubility} (Alanin_{\rm H_2O})}$

Calculate the free energy from transferring an amino acid from water to ethanol

$$\Delta G_{\rm tr} = -RT \ln \left(\frac{N_{\rm EtOH}}{N_{\rm H_2O}} \right) = -RT \ln (K_{\rm D})$$

Free amino acids carry a positive and a negative charge that is not present in the peptide chain

 α amino acids because of the α carboxylic and α amino groups pK₁ and pK₂ respectively pK_R is for R group pK's

 $pK_1 \approx 2.2$ while $pK_2 \approx 9.4$

In the physiological pH range, both carboxylic and amino groups are completely ionized

4240

CHARLES TANFORD

Vol. 84

[CONTRIBUTION FROM THE DEPARTMENT OF BIOCHEMISTRY, DUKE UNIVERSITY, MEDICAL CENTER, DURHAM, North Carolina]

Contribution of Hydrophobic Interactions to the Stability of the Globular Conformation of Proteins

By Charles Tanford Received April 9, 1962

Tanford, C. J Am Chem Soc 84, 4240–4247 (1962).

TABLE I^a

FREE ENERGY CHANGE IN CALORIES PER MOLE FOR TRANS-FER FROM ETHANOL TO WATER AT 25°

	ΔF_{t} , whole molecule	Δf_t , side chain contribution				
	Non-polar side chains					
Glycine	-4630	0				
Alanine	-3900	+730				
Valine	-2940	+1690				
Leucine	-2210	+2420				
Isoleucine	-1690^{b}	$+2970^{b}$				
Phenylalanine	-1980	+2650				
Proline	-2060°	$+2600^{\circ}$				
Other side chains						
Methionine	-3330	+1300				
Tyrosine	- 930 ^d	$+2870^{d}$				
Threonine	-4190	+ 440				
Serine	-4590	+ 40				
Asparagine	-4640	- 10				
Glutamine	-4730	- 100				
Aspartic acid ^e	-4090	+ 540 uncharged				
Glutamic acide	-4080	+ 550 uncharged				

Tanford 1962

Burying a charged amino acid in the interior (Born expression)

$$W_{\rm B} = \frac{q^2}{4\pi\varepsilon_0 r} \left(\frac{1}{\varepsilon_1} - \frac{1}{\varepsilon_2}\right)$$

 W_B is the free energy of transfer in moving a charged body from a region with a relative dielectric constant ε_2 to a medium with a with a relative dielectric constant ε_1 . The parameter r is the radius of the charge.

q (charge of an electron) = 1.60 x 10⁻¹⁹ C dielectric constant in vacuum ε_0 = 8.85 x 10⁻¹² C² J⁻¹ m⁻¹ *r* is ionic radius, with is typically 1-2 Å

Sharp, K.A. and Honig, B. (1990) Electrostatic interactions in macromolecules: theory and applications. Annu Rev Biophys Biophys Chem, 19, 301-332.

Tanford 1962

TABLE III

CONTRIBUTION OF THE MOST IMPORTANT HYDROPHOBIC INTERACTIONS TO THE FREE ENERGY OF UNFOLDING AT 25°

		Δfu per	Number present in			
	Side chain	side chain, cal./mole	myo- globin ^e	β-lacto- globulin ^b	ribo- nuclease ^e	
	Tryptophan	3000	2	2	0	
	Isoleucine	2970	9	10	3	
	Tyrosine	2870	3	4	6	
	Phenylalanine	2650	6	4	3	
	Proline	2600	4	8	4	
	Leucine	2420	18	22	2	
	Valine	1690	8	10	9	
	Lysine	1500	19	15	10	
	Methionine	1300	2	4	4	
	Alanine	730	17	14	11	
	Arginine	730	4	3	4	
	Threonine	440	5	8	10	
	Total number	of residues	153	162	124	
$-T\Delta S_{conf}$, kcal./mole $\Sigma \Delta f_u$, kcal./mole		184	- 194	149	(
		+173	+192	+100	ł	

conformation entropy hydrophobic effect

What did we learn today?

- Using numbers for cellular processes
- Energy scales
 - $k_{\rm B}T$ (single molecule) or RT (per mole) reference scale
 - Equilibrium free energy ΔG or equilibrium binding constant
 - Entropy from changes of number of states
- Macromolecular interactions in aqueous solutions
 - non-covalent interactions
 - hydrophobic effect