Interactions between proteins, DNA and RNA

The energy, length and time coordinate system to find your way in the cell

Coordinates for my lecture Tuesday, 14:15-15:45 BioQuant, seminar room 044

Karsten Rippe
BioQuant
Room 645, 6th floor
Telefon: 54-51376
e-mail: Karsten.Rippe@dkfz.de

Overview on learning Biophysics in Heidelberg http://malone.bioquant.uni-heidelberg.de/teaching

Material for the lecture: Biophysical concepts and theoretical descriptions http://malone.bioquant.uni-heidelberg.de/BPC_2014/BPC_1+2.html

Username: teaching
 Password: nonukes

(currently not active)

Problem sets

- Starting today there will be problem sets every $1-2$ weeks ($8-10$ total)
- These have to be returned until the following Tuesday at the beginning of lecture
- Then answers to the problem set (and any problems) are discussed
- Corrected problem sets are returned the next Tuesday (ideally...)
- "Benotete Scheine" will be given according to the results from the problem set
- You can select one bonus problem set of your choice, i. e. one can get 100% with one missing or $>100 \%$ if one does all problem sets correctly

The energy, length and time coordinate system to find your way in the cell

- Length: E. coli - Yeast cell - Human cell
- Speed: E. coli - how fast does it stop and go?
- Energy: Hydrolysis of ATP?

Quantitative biology needs numbers...

Cell Biology by the Numbers (upcoming book by Rob Philipps \& Ron Milo, Lecture by Ron Milo).
Book draft: http://book.bionumbers.org
Bionumbers database http://bionumbers.hms.harvard.edu

- Develop a coordinate system and intuition about the molecular life of a cell - "the microscopic world"
- "Sanity" checks (lecture, discussion, design of experiment...)
- Try to rationalize why the cell operates in a certain manner

How many mRNA molecules are in an E. coli cell?

$$
\begin{aligned}
& \text { a) } 10^{3}-10^{4} \\
& \text { b) } 10^{5}-10^{6} \\
& \text { c) } 10^{7}-10^{8} \\
& \text { d) } 10^{9}-10^{10}
\end{aligned}
$$

Before Ludwig Boltzmann got depressed and killed himself, he did some really great things, like inventing the Boltzmann constant

Molecules in an ideal gas

the average kinetic energy of a particle with mass m along the x-axis is related to $k_{B} T / 2$

$$
\begin{gathered}
\left\langle\frac{m v_{\mathrm{x}}^{2}}{2}\right\rangle=\frac{k T}{2} \quad\left\langle v_{\mathrm{x}}^{2}\right\rangle=\frac{k T}{m} \\
\sqrt{\left\langle v_{\mathrm{x}}^{2}\right\rangle}=\sqrt{\frac{k T}{m}}
\end{gathered}
$$

A protein like lysozyme ($M=14 \mathrm{kDa}$) at room temperature would have a speed of $\left\langle v_{x}{ }^{2}\right\rangle^{1 / 2}=13 \mathrm{~m} / \mathrm{sec}$ in vacuum.

Movements of a macromolecule in solution

- The macromolecule collides with water molecules and moves in a "random walk".
- The length of the free path is much smaller than the diameter of the particle.
- The average distance from the starting point is proportional to the square root of time.

$k_{\mathrm{B}} T$ is the energy available for spontaneous reactions

$$
P_{\mathrm{i}} \propto g_{i} \cdot \exp \left(\frac{-E_{\mathrm{i}}}{k_{\mathrm{B}} T}\right)
$$

The Boltzmann equation yields the probability P_{i} to find a molecule with energy E_{i}

- g_{i} : number of different states with energy E_{i}
- k_{B} : Boltzmann constant
- T: Temperature
probability to find a particle with an energy
- of $k_{B} T$ or larger: $0.37=>$ processes that requires an energy of $k_{B} T$ occur spontaneously
- of $10 \mathrm{k}_{\mathrm{B}}$ T or larger: $0.00005=>$ these processes will not occur spontaneously

```
at 25 '}\mp@subsup{}{}{\circ}\textrm{C}\mp@subsup{k}{\textrm{B}}{}T=4.1\cdot1\mp@subsup{0}{}{-21}\textrm{J}\mathrm{ or }\mp@subsup{\boldsymbol{k}}{\textrm{B}}{}\boldsymbol{T}=4.1 \textrm{pN}\cdot\textrm{nm
```

$k_{B} T$ refers to a single molecule
for of 1 mol of particles one has to use $k_{B} T \times 6.022 \cdot 10^{23}=R T$
at $25^{\circ} \mathrm{C}$ with $=8.3 \mathrm{~J} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~K}^{-1}=>\boldsymbol{R T}=2.5 \mathrm{~kJ} / \mathbf{m o l}$ or $0.6 \mathbf{k c a l} / \mathbf{m o l}$

Hydrolysis of ATP: ~20 kBT/ATP, $10-15 \mathrm{kcal} / \mathrm{mol}$ or $40-60 \mathrm{~kJ} / \mathrm{mol}$

The free energy $\Delta \mathrm{G}$

- At constant pressure P and constant temperature T the system is described by the Gibbs free energy:

$$
G \equiv H-T S \quad \Delta G=\Delta H-T \Delta S
$$

- H is the enthalpy or heat content of the system, S is the entropy of the system
- a reaction occurs spontaneously only if $\Delta \boldsymbol{G}<0$
- at equilibrium $\Delta \boldsymbol{G}=\mathbf{0}$
- for $\Delta G>0$ the input of energy is required to drive the reaction

ΔG of an reaction in equilibrium

$$
a \mathrm{~A}+b \mathrm{~B}+\ldots \rightleftarrows g \mathrm{G}+h \mathrm{H} \ldots
$$

$$
0=\Delta G^{0}+R T \ln \left(\frac{[\mathrm{G}]^{\mathrm{g}}[\mathrm{H}]^{\mathrm{h}} \ldots}{[\mathrm{~A}]^{\mathrm{a}}[\mathrm{~B}]^{\mathrm{b}} \ldots}\right)_{\mathrm{Eq}}
$$

$$
\Delta G^{0}=-R T \ln \left(\frac{[\mathrm{G}]^{\mathrm{g}}[\mathrm{H}]^{\mathrm{h}} \ldots}{[\mathrm{~A}]^{\mathrm{a}}[\mathrm{~B}]^{\mathrm{b}} \ldots}\right)_{\mathrm{Eq}}=-R T \ln K
$$

$$
K=\left(\frac{[\mathrm{G}]^{\mathrm{g}}[\mathrm{H}]^{\mathrm{h}} \ldots}{[\mathrm{~A}]^{\mathrm{a}}[\mathrm{~B}]^{\mathrm{b}} \ldots}\right)_{\mathrm{Eq}}=\exp \left(\frac{-\Delta G^{0}}{R T}\right)
$$

Weak forces maintain macromolecular structure

At $25^{\circ} \mathrm{C}, 0.6 \mathrm{kcal} / \mathrm{mol}$ or $2.5 \mathrm{~kJ} / \mathrm{mol}$ thermal energy: enough to break non-covalent bonds
=> Noncovalent interactions constantly forming and breaking

- Van der Waals Attractive Forces: $0.1-1.0 \mathrm{kcal} / \mathrm{mol}, 1 / \mathrm{r}^{6}$
- Hydrogen Bonds: 1-2 kcal/mol, 1/r3
- Ionic Interactions: $5 \mathrm{kcal} / \mathrm{mol}$ physiological, $1 / \mathrm{r}$
- Covalent bonds: 50-200 kcal/mol, $1 / \mathrm{r}^{v e r y}$ high
- Hydrolysis of ATP: 10-15 kcal/mol, 40-60 kJ/mol, ~20 kBT/ATP
but they can occur between macromolecule and water/ ions just as well...

Hydrogen bonding of liquid water

Hydrogen bonding of liquid water

Protein folding as seen in molecular dynamics simulations of the villin protein headpiece ($\sim 10 \mu$ s time scale)

Scheme of protein folding with solvent accessible amino acids in black

Table 1. Folded globular proteins.

buried ${ }^{\text {a }}$

non-polar side chains (Ala, Val, Ile, Leu,	
Met, Phe, Trp, Cys)	83%
peptide groups (-CO-NH-)	82%
ca. 1.1 intramolecular hydrogen bonds formed per residue ${ }^{\text {b }}$	

${ }^{\text {a }}$ Lesser \& Rose (1990).
${ }^{\text {b }}$ Stickle et al. (1992).
random coil

Calculating entropy: how probable or disordered is the final state?

Entropy provides that measure (Boltzmann)...

Criterion for Spontaneity:

For Avogadro number's of molecules...

$$
\begin{aligned}
& \mathrm{S}=\underbrace{\left(\mathrm{N}_{\text {Avogadro }} \mathrm{k}_{\mathrm{B}}\right)}_{\mathrm{R} \text { (gas constant) }} \ln \mathrm{W} \\
& \begin{array}{l}
\text { Therefore: the most probable } \\
\text { outcome maximizes entropy } \\
\text { of isolated systems }
\end{array}
\end{aligned}
$$

Unfavorable conformation entropy for protein folding

for the folded state: ~ 1 conformation

$$
S_{\text {folded }}=R \ln (1)=0
$$

for the unfolded state: x is the number of flexible points per residue and z is the number or possible orientations of equal energy at each point.

$$
S_{\mathrm{unfolded}}=R \ln \left(z^{x}\right)
$$

Estimating the unfavorable conformational entropy for protein folding

$$
S_{\text {conf }}=R \ln \left(z^{x}\right) \quad \Delta S_{\text {fold }}=R \ln \left(\frac{W_{\text {unfolded }}}{W_{\text {folded }}}\right)
$$

Tanford: For three flexible positions (ϕ, ψ, side chain) with two possible orientations each we have 2^{3} conformations per residue:
-T $\Delta \mathrm{S}=1.2 \mathrm{kcal} / \mathrm{mol}$ or $5.0 \mathrm{~kJ} / \mathrm{mol}$ (estimate Tanford 1962)
$1.7 \mathrm{kcal} / \mathrm{mol}$ (Spolar and Record, Science)

The hydrophobic effect drives macromolecular interactions

- Minimization of non-polar/water surface area leads to stability
- Complex mixture of physical properties
- Entropic contribution most significant
- Water must form a "cage" structure around non-polar surfaces

Measure solubility of amino acid in ethanol (= inside the folded protein) and in water (= unfolded state or at the protein surface)

partition coefficient $K_{\mathrm{D}}=\frac{\text { solubility }\left(\text { Alanin }_{\mathrm{EtOH}}\right)}{\text { solubility }\left(\operatorname{Alanin}_{\mathrm{H}_{2} \mathrm{O}}\right)}$

Calculate the free energy from transferring an amino acid from water to ethanol

$$
\Delta G_{\mathrm{tr}}=-R T \ln \left(\frac{N_{\mathrm{EtOH}}}{N_{\mathrm{H}_{2} \mathrm{O}}}\right)=-R T \ln \left(K_{\mathrm{D}}\right)
$$

Free amino acids carry a positive and a negative

 charge that is not present in the peptide chain

α amino acids because of the α carboxylic and α amino groups pK_{1} and pK_{2} respectively pK_{R} is for R group pK 's
$\mathrm{pK}_{1} \approx 2.2$ while $\mathrm{pK}_{2} \approx 9.4$
In the physiological pH range, both carboxylic and amino groups are completely ionized

Contribution of Hydrophobic Interactions to the Stability of the Globular Conformation of Proteins

By Charles Tanford
Received April 9, 1962

Tanford, C. J Am Chem Soc 84, 4240-4247 (1962).

Table I ${ }^{a}$
Free Energy Change in Calories Per Mole for Transfer from Ethanol to Water at 25°

	ΔF_{t}, whole molecule Non-polar side chains	Δf_{t}, side chain contribution
Glycine	-4630	0
Alanine	-3900	+730
Valine	-2940	+1690
Leucine	-2210	+2420
Isoleucine	-1690^{b}	$+2970^{b}$
Phenylalanine	-1980	+2650
Proline	-2060^{c}	$+2600^{c}$
	Other side chains	
	-3330	+1300
Methionine	-930^{d}	$+2870^{d}$
Tyrosine	-4190	+440
Threonine	-4590	+40
Serine	-4640	-10
Asparagine	-4730	-100
Glutamine	-4090	+540
Aspartic acide	-4080	+550
uncharged		
Glutamic acid ${ }^{e}$		

Burying a charged amino acid in the interior (Born expression)

$$
W_{\mathrm{B}}=\frac{q^{2}}{4 \pi \varepsilon_{0} r}\left(\frac{1}{\varepsilon_{1}}-\frac{1}{\varepsilon_{2}}\right)
$$

W_{B} is the free energy of transfer in moving a charged body from a region with a relative dielectric constant ε_{2} to a medium with a with a relative dielectric constant ε_{1}. The parameter r is the radius of the charge.
$\mathrm{q}($ charge of an electron $)=1.60 \times 10^{-19} \mathrm{C}$ dielectric constant in vacuum $\varepsilon_{0}=8.85 \times 10^{-12} \mathrm{C}^{2} \mathrm{~J}^{-1} \mathrm{~m}^{-1}$ r is ionic radius, with is typically $1-2 \AA$

Sharp, K.A. and Honig, B. (1990) Electrostatic interactions in macromolecules: theory and applications. Annu Rev Biophys Biophys Chem, 19, 301-332.

Table III

Contribution of the Most Important Hydrophobic Interactions to the Free Energy of Unfolding at 25°

Side chain s	Δf_{u} per side chain, cal./mole	$\begin{gathered} \text { myo- } \\ \text { globin }{ }^{\text {a }} \end{gathered}$	Number pres β-lactoglobulin ${ }^{\text {b }}$	ribonuclease ${ }^{\text {e }}$	
Tryptophan	3000	2	2	0	
Isoleucine	2970	9	10	3	
Tyrosine	2870	3	4	6	
Phenylalanine	2650	6	4	3	
Proline	2600	4	8	4	
Leucine	2420	18	22	2	
Valine	1690	8	10	9	
Lysine	1500	19	15	10	
Methionine	1300	2	4	4	
Alanine	730	17	14	11	
Arginine	730	4	3	4	
Threonine	440	5	8	10	
Total number of residues		153	162	124	
$-T \Delta S_{\text {conf }}$, kcal./mole $\Sigma \Delta f_{\mathrm{u}}, \mathrm{kcal} . / \mathrm{mole}$		-184	-194	-149	conformation entropy
		$+173$	+192	+100	hydrophobic effect

What did we learn today?

- Using numbers for cellular processes
- Energy scales
- $k_{\mathrm{B}} T$ (single molecule) or $R T$ (per mole) reference scale
- Equilibrium free energy $\Delta \mathrm{G}$ or equilibrium binding constant
- Entropy from changes of number of states
- Macromolecular interactions in aqueous solutions
- non-covalent interactions
- hydrophobic effect

